Park House School - Year 12 End of year assessment

Further Maths Assessment Manifest

- You will have 2 Further Maths papers, paper 1 will be pure papers, paper 1 will be statistics and mechanics
- Each paper will be 80 marks
- Each paper will be 1 hour and 40 mins
- You are expected to spend 1 minute on each mark and then 20 minutes checking your answers.

Core Pure

Topics	Red	Amber	Green
I can construct proofs using mathematical induction with contexts			
to include sums of series, divisibility and powers of matrices			
I can solve any quadratic equation with real coefficients			
I can solve cubic or quartic equations with real coefficients			
I can add, subtract, multiply and divide complex numbers in the			
form x+iy with x and y real			
I understand and use the terms 'real part' and 'imaginary part'			
I understand and use the complex conjugate			
I know that non-real roots of polynomial equations with real			
coefficients occur in conjugate pairs			
I can use and interpret Argand diagrams			
I can convert between Cartesian form and the modulus-argument			
form of a complex numbers			
I can multiply and divide complex numbers in modulus-argument			
form			
I can construct and interpret simple loci in the Argand diagram			
such as z-a >r and arg(z-a)=theta			
I can add, subtract and multiply conformable matrices			
I can multiply a matrix by a scalar			
I understand and use zero and identity matrices			
I use matrices to represent linear transformations in 2-D			
I can perform successive matrix transformations			
I can perform and describe a single transformation in 3-D			
I can find invariant points and lines for linear transformations			
I can calculate determinants of 2x2 and 3x3 matrices and interpret			
as scale factors, including the effect on orientation			
I understand and use singular and non-singular matrices			
I understand the properties of inverse matrices			
I can calculate and use the inverse of non-singular 2x2 and 3x3			
matrices			
I can solve three linear simultaneous equations in three variables			
by use of the inverse matrix			
I can interpret geometrically the solution and failure of solution of			
three simultaneous linear equations			
I understand and use the relationship between roots and			
coefficients of polynomial equations up to quartic equations			
I can form a polynomial equation whose roots are a linear			
transformation of the roots of a given polynomial equation (of at			
least cubic degree)			

I understand and use formulae for the sum of integers, squares	
I can derive formulae for and calculate volumes of revolution	
I understand and use the vector and Cartesian forms of an	
equation of a straight line in 3-D	
I understand and use the vector and Cartesian forms of the	
equation of a plane	
I can calculate the scalar product and use it to express the	
equation of a plane, and to calculate the angle between two lines,	
the angle between two planes and the angle between a line and a	
plane	
I can check whether vectors are perpendicular by using the scalar	
product	
I can find the intersection of a line and a plane	
I can calculate the perpendicular distance between two lines, from	
a point to a line and from a point to a plane	

Statistics

Topics	Red	Amber	Green
I can calculate the mean and variance of discrete probability			
distributions			
I can extend this to find the expected value function to include			
E(g(x))			
I can understand and use the Poisson distribution			
I can use the additive property of Poisson distributions			
I can find the mean and variance of the binomial distribution and			
the Poisson distribution			
I can use the Poisson distribution as an approximation to the			
binomial distribution			
I can extend the ideas of hypothesis tests to test for the mean of a			
Poisson distribution			
I can use the goodness of fit tests and contigency tables			
I can state and test the null and alternative hypotheses			
I can work out the degrees of freedom and use this to find critical			
values			

Mechanics

Topics	Red	Amber	Green
I can calculate the momentum and impulse			
I can use the impulse-momentum principle			
I can use the principle of the conservation of momentum applied			
to two spheres colliding directly			
I can calculate the momentum as a vector and use the impulse-			
momentum principle in vector form			
I can calculate kinetic energy, potential energy, work done and			
power			

I can use the work-energy principle and the principle of		
conservation of mechanical energy		
I can use the work-energy principle involving kinetic energy,		
potential energy and elastic energy		
I can understand and use Newton's law of restitution for the direct		
impact of elastic spheres		
I can answer problems involving the loss of kinetic energy due to		
an impact		