Park House School - Year 13 Feb/March Mocks

Further Maths Assessment Manifest

- You will have 4 Further Maths papers, paper 1 will be pure paper, paper 2 will be a pure paper, paper 3 will be mechanics and paper 4 will be statistics
- Each paper will be 75 marks
- Each paper will be 90 minutes
- You are expected to spend 1 minute on each mark and then 15 minutes checking your answers.

Core Pure

Topics	Red	Amber	Green
I can construct proofs using mathematical induction with contexts			
to include sums of series, divisibility and powers of matrices			
I can solve any quadratic equation with real coefficients			
I can solve cubic or quartic equations with real coefficients			
I can add, subtract, multiply and divide complex numbers in the			
form x+iy with x and y real			
I understand and use the terms 'real part' and 'imaginary part'			
I understand and use the complex conjugate			
I know that non-real roots of polynomial equations with real			
coefficients occur in conjugate pairs			
I can use and interpret Argand diagrams			
I can convert between Cartesian form and the modulus-argument			
form of a complex numbers			
I can multiply and divide complex numbers in modulus-argument			
form			
I can construct and interpret simple loci in the Argand diagram			
such as z-a >r and arg(z-a)=theta			
I can understand de Moivre's theorem and use it to find multiple			
angle formula and sums of series			
I know and use the definition $e^{itheta} = cos(theta) + isin(theta)$ and			
the form z=re ^{itheta}			
I can find the n distinct nth roots of re ^{itheta} for $r\neq 0$ and know that			
they form the vertices of a regular n-gon in the Argand diagram			
I can use complex roots of unity to solve geometric problems			
I can add, subtract and multiply conformable matrices			
I can multiply a matrix by a scalar			
I understand and use zero and identity matrices			
I use matrices to represent linear transformations in 2-D			
I can perform successive matrix transformations			
I can perform and describe a single transformation in 3-D			
I can find invariant points and lines for linear transformations			
I can calculate determinants of 2x2 and 3x3 matrices and interpret			
as scale factors, including the effect on orientation			
I understand and use singular and non-singular matrices			
I understand the properties of inverse matrices			
I can calculate and use the inverse of non-singular 2x2 and 3x3			
matrices			
I can solve three linear simultaneous equations in three variables			
by use of the inverse matrix			

I can interpret geometrically the solution and failure of solution of	
three simultaneous linear equations	
I understand and use the relationship between roots and	
coefficients of polynomial equations up to quartic equations	
I can form a polynomial equation whose roots are a linear	
transformation of the roots of a given polynomial equation (of at	
least cubic degree)	
I understand and use formulae for the sum of integers, squares	
and cubes and use these to sum other series	
I understand and use the method of differences for summation of	
series including use of partial fractions	
I can find the Maclaurin series of a function including the general	
term	
I recognise and use the Maclaurin series for e^x , $ln(1+x)$, sinx, cosx	
and $(1+x)^n$, and be aware of the range of value of x for which they	
are valid	
I can derive formulae for and calculate volumes of revolution	
I can evaluate improper integrals where either the integrand is	
undefined at a value in the range of integration or the range of	
integration extends to infinity	
I understand and evaluate the mean value of a function	
I can integrate using partial fractions	
I can differentiate inverse trigonometric functions	
I can integrate functions of the form $(a^2-x^2)^{-1/2}$ and $(a^2-x^2)^{-1}$ and be	
able to choose trigonometric substitutions to integrate associated	
functions	
I can derive formulae for and calculate volumes of revolution	
I understand and use the vector and Cartesian forms of an	
equation of a straight line in 3-D	
I understand and use the vector and Cartesian forms of the	
equation of a plane	
I can calculate the scalar product and use it to express the	
equation of a plane, and to calculate the angle between two lines,	
the angle between two planes and the angle between a line and a	
plane	
I can check whether vectors are perpendicular by using the scalar	
product	
I can find the intersection of a line and a plane	
I can calculate the perpendicular distance between two lines, from	
a point to a line and from a point to a plane	
I understand and use polar coordinates and am able to convert	
between polar and Cartesian coordinates	
I can sketch curves r given as a function of theta, including use of	
trigonometric functions	
I can find the area enclosed by a polar curve	
I can find tangents parallel to, or perpendicular to the initial line	
I understand the definitions of hyperbolic functions sinhx, coshx	
and tanhx, including their domains and ranges, and am able to	
sketch their graphs	
I can differentiate and integrate hyperbolic functions	
I understand and am able to use the definitions of the inverse	
hyperbolic functions and their domains and ranges	

I can derive and use the logarithmic forms of the inverse	
hyperbolic functions	
I can integrate functions of the form $(x^2+a^2)^{\frac{1}{2}}$ and $(x^2-a^2)^{\frac{1}{2}}$ and	
am able to choose substitutions to integrate associated functions	
I can find and use an integrating factor to solve first order	
differential equations and recognise when it is appropriate to do so	
I can find both general and particular solutions to differential	
equations	
I can use differential equations in modelling in kinematics and in	
other contexts	
I can solve differential equations of the form $y'' + ay' + by = 0$	
where a and b are constants by using the auxiliary equation	
I can solve differential equations of the form $y'' + ay' + by = f(x)$	
where a and b are constants by solving the homogeneous case	
and adding a particular integral to the complementary function	
I can understand and use the relationship between the cases when	
the discriminant of the auxiliary equation is positive, zero and	
negative and the form of the solution of the differential equation	
I can solve the equation for simple harmonic motion and relate the	
solution to the motion	
I can model damped oscillations using second order differential	
equations and interpret their solutions	
I can analyse and interpret models of situations with one	
independent variable and two dependent variables as a pair of	
coupled first order simultaneous equations and be able to solve	
them, for example predator-prey models	
<u>Statistics</u>	

Topics	Red	Amber	Green
I can calculate the mean and variance of discrete probability			
distributions			
I can extend this to find the expected value function to include			
E(g(x))			
I can understand and use the Poisson distribution			
I can use the additive property of Poisson distributions			
I can find the mean and variance of the binomial distribution and			
the Poisson distribution			
I can use the Poisson distribution as an approximation to the			
binomial distribution			
I can understand and use geometric and negative binomial			
distributions			
I can find the mean and variance of a geometric distribution with			
parameter p			
I can find the mean and variance of negative binomial distribution			
I can extend the ideas of hypothesis tests to test for the mean of a			
Poisson distribution			
I can extend hypothesis testing to test for the parameter p of a			
geometric distribution			
I can apply the Central Limit Theorem to other distributions			
I can use the goodness of fit tests and contigency tables			
I can state and test the null and alternative hypotheses			

I can work out the degrees of freedom and use this to find critical		
values		
I can define and derive probability generating functions		
I can use probability generating functions for the negative		
binomial, geometric, binomial and Poisson distributions		
I can use probability generating functions to find the mean and		
variance		
I can use probability generating functions of the sum of		
independent random variables		
I can understand Type I and Type II errors		
I can use Type I and Type II errors and the power function to		
indicate the effectiveness of statistical tests		

Mechanics

Topics	Red	Amber	Green
I can calculate the momentum and impulse			
I can use the impulse-momentum principle			
I can use the principle of the conservation of momentum applied			
to two spheres colliding directly			
I can calculate the momentum as a vector and use the impulse-			
momentum principle in vector form			
I can calculate kinetic energy, potential energy, work done and			
power			
I can use the work-energy principle and the principle of			
conservation of mechanical energy			
I can use Hooke's law in elastic springs and strings			
I can find the energy stored in an elastic string or spring			
I can use the work-energy principle involving kinetic energy,			
potential energy and elastic energy			
I can understand and use Newton's law of restitution for the direct			
impact of elastic spheres			
I can answer problems involving the loss of kinetic energy due to			
an impact			
I can answer problems involving successive direct impact of			
spheres and/or a sphere with a smooth plane surface			
I can answer problems involving oblique impact of smooth elastic			
spheres and a smooth sphere with a fixed surface			
I can answer problems involving the loss of kinetic energy due to			
an oblique impact			
I can answer problems involving successive oblique impacts of a			
sphere with smooth plane surfaces			