Park House School - Year 13 Feb/March Mocks

Maths Assessment Manifest

- You will have 3 Maths papers, paper 1 and paper 2 is pure only, paper 3 is statistics and mechanics
- Each paper will be 100 marks
- Each paper will be 2 hours
- You are expected to spend 1 minute on each mark and then 20 minutes checking your answers.

<u>Pure</u>

Topics	Red	Amber	Green
I can understand and use the structure of mathematical proof,			
proceeding from given assumptions through a series of logical			
steps to a conclusion; use methods of proof including:			
Proof by deduction			
Proof by exhaustion			
Disproof by counter example			
Proof by contradiction			
I can understand and use the laws of indices for all rational			
exponents			
I can use and manipulate surds including rationalising the			
denominator			
I can work with quadratic functions and their graphs			
I can find the discriminant of a quadratic function, including the conditions for real and repeated roots			
I can complete the square			
I can find solutions of quadratic equations			
I can solve quadratic equations in a function of the unknown			
I can solve simultaneous equations in two variables by elimination			
and by substitution, including one linear and one quadratic			
equation			
I can solve linear and quadratic inequalities in a single variable and			
interpret such inequalities graphically, including inequalities with			
brackets and fractions			
I can express solutions through correct us of 'and' and 'or' or			
through set notation			
I can represent linear and quadratic inequalities graphically			
I can manipulate polynomial algebraically, including expanding			
brackets and collecting like terms, factorisation and simple			
algebraic division; use of the factor theorem			
I can simplify rational expressions, including by factorising and			
cancelling, and algebraic division			
I can understand and use graphs of functions; sketch curves			
defined by simple equations including polynomials			
I can understand and use the modulus of a linear function			
I can interpret algebraic solutions of equations graphically; use			
intersection points of graphs to solve equations			
I can understand and use proportional relationships and their			
graphs			
I can understand and use composite functions, inverse functions			
and their graphs			

I can understand the effect of simple transformations on the graph	
y=f(x), including sketching associated graphs	
I can decompose rational functions into partial fractions	
I can use functions in modelling including consideration of limitations and refinements of the model	
I can understand and use the equation of a straight line, including	
the forms $y-y_1=m(x-x_1)$ and $ax + by + c = 0$	
I can understand the gradient conditions for two straight lines to	
be parallel or perpendicular	
I can use straight line models in a variety of contexts	
I can understand and use the coordinate geometry of the circle	
including using the equation of a circle in the form $(x-a)^2+(y-b)^2=r^2$	
I can complete the square to find the centre and radius of a circle	
and then use the following properties:	
The angle in a semicircle is a right angle	
The perpendicular from the centre to a chord bisects the	
chord	
The radius of a circle at a given point on its circumference is	
perpendicular to the tangent to the circle at that point	
I can understand and use the parametric equations of curves and	
convert between Cartesian and parametric forms	
I can use parametric equations in modelling in a variety of contexts	
I can understand and use the binomial expansion of (a+bx) ⁿ for	
positive integer n and extend to any rational n, including its use for	
approximation	
I can understand and use the definitions of sine, cosine and	
I can understand and use the sine and cosine rules and the area of	
a triangle formula	
I can work with radian measure, including use for arc length and	
area of a sector	
I can understand and use the standard small angle approximations	
of sine, cosine and tangent	
I can understand and use the sine, cosine and tangent functions,	
their graphs, symmetries and periodicity	
I can understand and use the definitions of secant, cosecant and	
cotangent and of arcsin, arccos and arctan; their relationship to	
sine, cosine and tangent. I can understand their graphs and their	
ranges and domains	
I can understand and use trigonometric identities	
I can understand and use the double angle formulae and the	
compound angle formulae	
I can understand geometrical proofs of these formulae	
I can understand and use expressions for acosx + bsinx in the	
equivalent forms of rcos(x+a) or rsin(x+a)	
I can solve simple trigonometric equations in a given interval,	
including quadratic equations in sin, cos and tan and equations	
involving multiples of the unknown angle	
I can construct proofs involving trigonometric functions and identities	
luctiques	

		
I can use trigonometric functions to solve problems in context,		
including problems involving vectors, kinematics and forces		
I can use the function a ^x and its graph, where a is positive		
I can use the function e ^x and its graph		
I know that the gradient of e ^{kx} is equal to ke ^{kx} and hence		
understand why the exponential model is suitable in many		
applications		
I know and use the definition of log _a x as the inverse of a ^x , where a		
is positive and x>0		
I know and use the function ln x and its graph		
I know and use ln x as the inverse function of e ^x		
I can understand and use the laws of logarithms		
I can solve equations of the form a ^x =b		
I can use logarithmic graphs to estimate parameters in		
relationships of the form y=ax ⁿ and y=kb ^x		
I can understand and use exponential growth and decay; use in		
modelling; with consideration of limitations and refinements of		
exponential models		
I can understand the derivate of $f(x)$ as the gradient of the tangent		
to the graph of $y=f(x)$ at a general point (x,y) ; the gradient of the		
tangent as a limit; interpretation as a rate of change		
I can sketch the gradient function for a given curve		
I can calculate second derivatives		
I can use differentiation from first principles for small positive		
integer powers of x and for sinx and cosx		
I can understand and use the second derivative as the rate of		
change of a gradient and connect this to convex and concave		
sections of curves along with points of inflection		
I can differentiate x^n , for rational values of n, and related constant		
multiples, sums and differences		
I can differentiate e ^{kx} and a ^{kx} , sinkx, coskx, tankx and related		
sums, differences and constant multiples		
I can understand and use the derivative of ln x		
I can apply differentiation to find gradients, tangents and normals		
I can calculate maxima and minima and stationary points		
I can identify where functions are increasing or decreasing		
I can differentiate using the product rule, the quotient rule and the		
chain rule, including problems involving connected rates of change		
and inverse functions		
I can differentiate simple functions and relations defined implicitly		
or parametrically, for first derivative only		
I can construct simple differential equations in pure mathematics		
and in context		
I know and use the fundamental theorem of calculus		
I can integrate x ⁿ and related sums, differences and constant		
multiples		
I can integrate e ^{kx} , 1/x, sinkx, coskx and related sums, differences		
and constant multiples		
I can understand and use numerical integration, including the use		
of the trapezium rule and estimate the approximate area under a		
curve		

I can evaluate definite integrals, use a definite integral to find the	
area under a curve and the area between two curves	
I can understand and use integration as the limit of a sum	
I can carry out simple cases of integration by substitution and	
integration by parts and I understand that these methods are the	
inverse processes of the chain and product rules	
I can integrate using partial fractions that are linear in the	
denominator	
I can evaluate the analytical solution of simple first order	
differential equations with separable variables, including finding	
particular solutions	
I interpret the solution of a differential equation in the context of	
solving a problem, including identifying limitations of the solution,	
including links to kinematics	
I can locate roots of $f(x)=0$ by considering changes of sign of $f(x)$	
in an interval of x on which f(x) is sufficiently well behaved	
I can use vectors in two dimensions and in three dimensions	
I can calculate the magnitude and direction of a vector and convert	
between component form and magnitude/direction form	
I can add vectors diagrammatically and perform the algebraic	
operations of vector addition and multiplication by scalars, and	
understand their geometrical interpretations	
I can understand and use position vectors, calculate the distance	
between two points represented by position vectors	
I can use vectors to solve problems in pure mathematics and in	
context	

Statistics

I can understand and use the terms 'population' and 'sample' I can use samples to make informal inferences about the population I can understand and use sampling techniques, including simple random sampling and opportunity sampling I can select or critique sampling techniques in the context of solving a statistical problem, including understanding that different samples can lead to different conclusions about the population I can interpret diagrams for single-variable data, including understanding that area in a histogram represents frequency and can connect this to probability distributions I can understand the informal interpretation of correlation I can understand that correlation does not imply causation I can interpret measures of central tendency and variation, extending to standard deviation I can interpret measures of central tendency and variation, extending to standard deviation, including from summary statistics I can recognise and interpret possible outliers in data sets and statistical diagrams I can select or critique data presentation techniques in the context of a statistical problem I can claulating adain including dealing with missing data, errors and outliers I can understand and use mutually exclusive and independent events when calculating probabilities I can link this to discrete and continuous distributions I can understand and use conditional probability, including the use of tree diagrams, Venn diagrams and two-way tables I can understand and use the conditional probability formula I can model with probability including ritiquing assumptions made and the likely effect of more realistic assumptions I can understand and use the Normal distribution I can inderstand solve the Normal distribution I can link this to histograms, mean, standard deviation and points of inflection I can link Normal distribution and the binomial distribution I can link Normal distribution and the binomial distribution I can ink Normal model may not be appropriate I can understand and apply the language of statisti	Topics	Red	Amber	Green
I can use samples to make informal inferences about the population I can understand and use sampling techniques, including simple random sampling and opportunity sampling I can select or critique sampling techniques in the context of solving a statistical problem, including understanding that different samples can lead to different conclusions about the population I can interpret diagrams for single-variable data, including understanding that area in a histogram represents frequency and can connect this to probability distributions I can understand the informal interpretation of correlation I can understand the informal interpretation of correlation I can understand that correlation does not imply causation I can interpret measures of central tendency and variation, extending to standard deviation, including from summary statistics I can recognise and interpret possible outliers in data sets and statistical diagrams I can select or critique data presentation techniques in the context of a statistical problem I can claudate standard use mutually exclusive and independent events when calculating probabilities I can link this to discrete and continuous distributions I can understand and use mutually exclusive and independent events when calculating probabilities I can understand and use the conditional probability, including the use of tree diagrams, Venn diagrams and two-way tables I can understand and use the conditional probability formula I can understand and use simple, discrete probability distributions including binomial distribution, as a model and calculate probabilities using the binomial distribution I can link this to histograms, mean, standard deviation and points of inflection I can link this to histograms, mean, standard deviation and points of inflection I can link hormal distribution and the binomial distribution I can link hormal distribution and the binomial distribution I can link hormal distribution and the binomial distribution I can link hormal distribution and the binomial model: null hypot				
Depulation I can understand and use sampling techniques, including simple random sampling and opportunity sampling I can select or critique sampling techniques in the context of solving a statistical problem, including understanding that different samples can lead to different conclusions about the population I can interpret diagrams for single-variable data, including understanding that area in a histogram represents frequency and can connect this to probability distributions I can understand the informal interpretation of correlation I can understand that correlation does not imply causation I can interpret measures of central tendency and variation, extending to standard deviation I can calculate standard deviation, including from summary statistics I can recognise and interpret possible outliers in data sets and statistical diagrams I can select or critique data presentation techniques in the context of a statistical problem I can clean data including dealing with missing data, errors and outliers I can understand and use mutually exclusive and independent events when calculating probabilities I can link this to discrete and continuous distributions I can understand and use conditional probability, including the use of tree diagrams, Venn diagrams and two-way tables I can understand and use the conditional probability formula I can model with probability including critiquing assumptions made and the likely effect of more realistic assumptions I can understand and use simple, discrete probability distribution I can understand and use the Normal distribution I can link Normal distribution as a model and calculate probabilities using the binomial distribution I can link this to histograms, mean, standard deviation and points of inflection I can link this to histograms, mean, standard deviation and points of inflection I can link hormal distribution and the binomial distribution I can link this to histograms, mean, standard deviation and points of inflection I can link Normal distribution and the binomial distr				
I can understand and use sampling techniques, including simple random sampling and opportunity sampling I can select or critique sampling techniques in the context of solving a statistical problem, including understanding that different samples can lead to different conclusions about the population I can interpret diagrams for single-variable data, including understanding that area in a histogram represents frequency and can connect this to probability distributions I can understand the informal interpretation of correlation I can understand that correlation does not imply causation I can interpret measures of central tendency and variation, extending to standard deviation I can calculate standard deviation, including from summary statistics I can recognise and interpret possible outliers in data sets and statistical diagrams I can select or critique data presentation techniques in the context of a statistical problem I can clean data including dealing with missing data, errors and outliers I can understand and use mutually exclusive and independent events when calculating probabilities I can link this to discrete and continuous distributions I can understand and use conditional probability, including the use of tree diagrams, Venn diagrams and two-way tables I can understand and use the conditional probability formula I can model with probability including critiquing assumptions made and the likely effect of more realistic assumptions I can understand and use simple, discrete probability distributions including binomial distribution, as a model and find probabilities using the binomial distribution as a model and find probabilities using the binomial distribution for a context, with appropriate reasoning, including recognising when the binomial or Normal model may not be appropriate I can understand and apply the language of statistical hypothesis testing, developed through a binomial model: null hypothesis, alternative hypothesis, significance level, 2-tail test, critical value, critical region, acceptance re	·			
random sampling and opportunity sampling I can select or critique sampling techniques in the context of solving a statistical problem, including understanding that different samples can lead to different conclusions about the population I can interpret diagrams for single-variable data, including understanding that area in a histogram represents frequency and can connect this to probability distributions I can understand the informal interpretation of correlation I can understand that correlation does not imply causation I can interpret measures of central tendency and variation, extending to standard deviation I can calculate standard deviation, including from summary statistics I can recognise and interpret possible outliers in data sets and statistical diagrams I can select or critique data presentation techniques in the context of a statistical problem I can clean data including dealing with missing data, errors and outliers I can understand and use mutually exclusive and independent events when calculating probabilities I can link this to discrete and continuous distributions I can understand and use conditional probability, including the use of tree diagrams, Venn diagrams and two-way tables I can understand and use the conditional probability formula I can understand and use simple, discrete probability formula I can understand and use simple, discrete probability distributions including binomial distribution, as a model and calculate probabilities using the binomial distribution I can link this to histograms, mean, standard deviation and points of inflection I can link Normal distribution and the binomial distribution I can link Normal distribution and the binomial distribution I can understand and apply the language of statistical hypothesis testing, developed through a binomial model: null hypothesis, significance level, 2-tail test, critical value, critical region, acceptance region, p-value				
I can select or critique sampling techniques in the context of solving a statistical problem, including understanding that different samples can lead to different conclusions about the population I can interpret diagrams for single-variable data, including understanding that area in a histogram represents frequency and can connect this to probability distributions I can understand the informal interpretation of correlation I can understand that correlation does not imply causation I can interpret measures of central tendency and variation, extending to standard deviation, including from summary statistics I can recognise and interpret possible outliers in data sets and statistical diagrams I can select or critique data presentation techniques in the context of a statistical problem I can clean data including dealing with missing data, errors and outliers I can understand and use mutually exclusive and independent events when calculating probabilities I can link this to discrete and continuous distributions I can understand and use conditional probability, including the use of tree diagrams, Venn diagrams and two-way tables I can understand and use the conditional probability formula I can model with probability including critiquing assumptions made and the likely effect of more realistic assumptions I can understand and use simple, discrete probability distributions including binomial distribution, as a model and find probabilities using the binomial distribution I can link this to histograms, mean, standard deviation and points of inflection I can link Normal distribution and the binomial distribution I can link Normal distribution and the binomial distribution I can link Normal model may not be appropriate I can understand and apply the language of statistical hypothesis testing, developed through a binomial model: null hypothesis, significance level, 2-tail test, critical value, critical region, acceptance region, p-value				
solving a statistical problem, including understanding that different samples can lead to different conclusions about the population I can interpret diagrams for single-variable data, including understanding that area in a histogram represents frequency and can connect this to probability distributions I can understand the informal interpretation of correlation I can understand that correlation does not imply causation I can interpret measures of central tendency and variation, extending to standard deviation, including from summary statistics I can recognise and interpret possible outliers in data sets and statistical diagrams I can select or critique data presentation techniques in the context of a statistical problem I can clean data including dealing with missing data, errors and outliers I can understand and use mutually exclusive and independent events when calculating probabilities I can link this to discrete and continuous distributions I can understand and use conditional probability, including the use of tree diagrams, Venn diagrams and two-way tables I can understand and use the conditional probability formula I can model with probability including critiquing assumptions made and the likely effect of more realistic assumptions I can understand and use simple, discrete probability distributions including binomial distribution, as a model and calculate probabilities using the binomial distribution I can understand and use the Normal distribution I can link this to histograms, mean, standard deviation and points of inflection I can link Normal distribution and the binomial distribution I can link Normal distribution and the binomial or Normal model may not be appropriate I can understand and apply the language of statistical hypothesis testing, developed through a binomial model: null hypothesis testing, developed through a binomial model: null hypothesis testing, developed through a binomial model: null hypothesis				
Samples can lead to different conclusions about the population I can interpret diagrams for single-variable data, including understanding that area in a histogram represents frequency and can connect this to probability distributions I can understand the informal interpretation of correlation I can understand that correlation does not imply causation I can interpret measures of central tendency and variation, extending to standard deviation, including from summary statistics I can recognise and interpret possible outliers in data sets and statistical diagrams I can select or critique data presentation techniques in the context of a statistical problem I can clean data including dealing with missing data, errors and outliers I can understand and use mutually exclusive and independent events when calculating probabilities I can link this to discrete and continuous distributions I can understand and use conditional probability, including the use of tree diagrams, Venn diagrams and two-way tables I can understand and use the conditional probability formula I can model with probability including critiquing assumptions made and the likely effect of more realistic assumptions I can understand and use simple, discrete probability distributions I can understand and use the Normal distribution I can link this to histograms, mean, standard deviation and points of inflection I can link Normal distribution and the binomial distribution I can link Normal distribution and the binomial distribution I can link Normal distribution and the binomial distribution I can understand and apply the language of statistical hypothesis testing, developed through a binomial model: null hypothesis, significance level, 2-tail test, critical value, critical region, acceptance region, p-value				
I can interpret diagrams for single-variable data, including understanding that area in a histogram represents frequency and can connect this to probability distributions I can understand the informal interpretation of correlation I can understand that correlation does not imply causation I can interpret measures of central tendency and variation, extending to standard deviation I can calculate standard deviation, including from summary statistics I can recognise and interpret possible outliers in data sets and statistical diagrams I can select or critique data presentation techniques in the context of a statistical problem I can clauding dealing with missing data, errors and outliers I can understand and use mutually exclusive and independent events when calculating probabilities I can link this to discrete and continuous distributions I can understand and use conditional probability, including the use of tree diagrams, Venn diagrams and two-way tables I can understand and use the conditional probability formula I can model with probability including critiquing assumptions made and the likely effect of more realistic assumptions I can understand and use simple, discrete probability distributions including binomial distribution, as a model and calculate probabilities using the binomial distribution I can link this to histograms, mean, standard deviation and points of inflection I can link Normal distribution and the binomial distribution I can link Normal distribution and the binomial distribution I can understand and apply the language of statistical hypothesis testing, developed through a binomial model: null hypothesis, significance level, 2-tail test, critical value, critical region, acceptance region, p-value	· · · · · · · · · · · · · · · · · · ·			
understanding that area in a histogram represents frequency and can connect this to probability distributions I can understand the informal interpretation of correlation I can understand that correlation does not imply causation I can interpret measures of central tendency and variation, extending to standard deviation, including from summary statistics I can recognise and interpret possible outliers in data sets and statistical diagrams I can select or critique data presentation techniques in the context of a statistical problem I can clean data including dealing with missing data, errors and outliers I can understand and use mutually exclusive and independent events when calculating probabilities I can link this to discrete and continuous distributions I can understand and use conditional probability, including the use of tree diagrams, Venn diagrams and two-way tables I can understand and use the conditional probability formula I can model with probability including critiquing assumptions made and the likely effect of more realistic assumptions I can understand and use simple, discrete probability distributions including binomial distribution, as a model and calculate probabilities using the binomial distribution I can understand and use the Normal distribution as a model and find probabilities using the binomial distribution for a context, with appropriate reasoning, including recognising when the binomial or Normal model may not be appropriate I can understand and apply the language of statistical hypothesis testing, developed through a binomial model: null hypothesis, alternative hypothesis, significance level, 2-tail test, critical value, critical region, acceptance region, p-value	•			
can connect this to probability distributions I can understand the informal interpretation of correlation I can understand that correlation does not imply causation I can interpret measures of central tendency and variation, extending to standard deviation, including from summary statistics I can recognise and interpret possible outliers in data sets and statistical diagrams I can select or critique data presentation techniques in the context of a statistical problem I can claculate standard deviation, including from summary statistical diagrams I can select or critique data presentation techniques in the context of a statistical problem I can clace and data including dealing with missing data, errors and outliers I can understand and use mutually exclusive and independent events when calculating probabilities I can link this to discrete and continuous distributions I can understand and use conditional probability, including the use of tree diagrams, Venn diagrams and two-way tables I can understand and use the conditional probability formula I can understand and use the conditional probability formula I can understand and use simple, discrete probability distributions including binomial distribution, as a model and calculate probabilities using the binomial distribution I can link this to histograms, mean, standard deviation and points of inflection I can link Normal distribution and the binomial distribution I can link Normal distribution and the binomial distribution I can select an appropriate probability distribution I can link Normal distribution and the binomial distribution I can link Normal model may not be appropriate I can understand and apply the language of statistical hypothesis testing, developed through a binomial model: null hypothesis, alternative kypothesis, significance level, 2-tail test, critical value, critical region, acceptance region, p-value	, , , , ,			
I can understand the informal interpretation of correlation I can understand that correlation does not imply causation I can interpret measures of central tendency and variation, extending to standard deviation I can calculate standard deviation, including from summary statistics I can recognise and interpret possible outliers in data sets and statistical diagrams I can select or critique data presentation techniques in the context of a statistical problem I can clean data including dealing with missing data, errors and outliers I can understand and use mutually exclusive and independent events when calculating probabilities I can link this to discrete and continuous distributions I can understand and use conditional probability, including the use of tree diagrams, Venn diagrams and two-way tables I can understand and use the conditional probability formula I can understand and use the conditional probability formula I can understand and use simple, discrete probability distributions including binomial distribution, as a model and calculate probabilities using the binomial distribution I can link this to histograms, mean, standard deviation and points of inflection I can link Normal distribution and the binomial distribution I can link Normal distribution and the binomial distribution I can select an appropriate probability distribution for a context, with appropriate reasoning, including recognising when the binomial or Normal model may not be appropriate I can understand and apply the language of statistical hypothesis testing, developed through a binomial model: null hypothesis, alternative hypothesis, significance level, 2-tail test, critical value, critical region, acceptance region, p-value				
I can understand that correlation does not imply causation I can interpret measures of central tendency and variation, extending to standard deviation. I can calculate standard deviation, including from summary statistics I can recognise and interpret possible outliers in data sets and statistical diagrams I can select or critique data presentation techniques in the context of a statistical problem I can clean data including dealing with missing data, errors and outliers I can understand and use mutually exclusive and independent events when calculating probabilities I can link this to discrete and continuous distributions I can understand and use conditional probability, including the use of tree diagrams, Venn diagrams and two-way tables I can understand and use the conditional probability formula I can model with probability including critiquing assumptions made and the likely effect of more realistic assumptions I can understand and use simple, discrete probability distributions including binomial distribution, as a model and calculate probabilities using the binomial distribution I can understand and use the Normal distribution I can link this to histograms, mean, standard deviation and points of inflection I can link Normal distribution and the binomial distribution I can select an appropriate reasoning, including recognising when the binomial or Normal model may not be appropriate I can understand and apply the language of statistical hypothesis, significance level, 2-tail test, critical value, critical region, acceptance region, p-value				
I can interpret measures of central tendency and variation, extending to standard deviation I can calculate standard deviation, including from summary statistics I can recognise and interpret possible outliers in data sets and statistical diagrams I can select or critique data presentation techniques in the context of a statistical problem I can clean data including dealing with missing data, errors and outliers I can understand and use mutually exclusive and independent events when calculating probabilities I can link this to discrete and continuous distributions I can understand and use conditional probability, including the use of tree diagrams, Venn diagrams and two-way tables I can understand and use the conditional probability formula I can model with probability including critiquing assumptions made and the likely effect of more realistic assumptions I can understand and use simple, discrete probability distributions including binomial distribution, as a model and calculate probabilities using the binomial distribution I can understand and use the Normal distribution I can link this to histograms, mean, standard deviation and points of inflection I can link Normal distribution and the binomial distribution I can link Normal distribution and the binomial distribution I can select an appropriate reasoning, including recognising when the binomial or Normal model may not be appropriate I can understand and apply the language of statistical hypothesis testing, developed through recognising developed through a binomial model: null hypothesis, alternative hypothesis, significance level, 2-tail test, critical value, critical region, acceptance region, p-value				
extending to standard deviation I can calculate standard deviation, including from summary statistics I can recognise and interpret possible outliers in data sets and statistical diagrams I can select or critique data presentation techniques in the context of a statistical problem I can clean data including dealing with missing data, errors and outliers I can understand and use mutually exclusive and independent events when calculating probabilities I can link this to discrete and continuous distributions I can understand and use conditional probability, including the use of tree diagrams, Venn diagrams and two-way tables I can understand and use the conditional probability formula I can model with probability including critiquing assumptions made and the likely effect of more realistic assumptions I can understand and use simple, discrete probability distributions including binomial distribution, as a model and calculate probabilities using the binomial distribution I can understand and use the Normal distribution as a model and find probabilities using the Normal distribution I can link this to histograms, mean, standard deviation and points of inflection I can link Normal distribution and the binomial distribution I can select an appropriate probability distribution for a context, with appropriate reasoning, including recognising when the binomial or Normal model may not be appropriate I can understand and apply the language of statistical hypothesis testing, developed through a binomial model: null hypothesis, alternative hypothesis, significance level, 2-tail test, critical value, critical region, acceptance region, p-value				
I can calculate standard deviation, including from summary statistics I can recognise and interpret possible outliers in data sets and statistical diagrams I can select or critique data presentation techniques in the context of a statistical problem I can clean data including dealing with missing data, errors and outliers I can understand and use mutually exclusive and independent events when calculating probabilities I can link this to discrete and continuous distributions I can understand and use conditional probability, including the use of tree diagrams, Venn diagrams and two-way tables I can understand and use the conditional probability formula I can understand and use the conditional probability formula I can understand and use simple, discrete probability distributions including binomial distribution, as a model and calculate probabilities using the binomial distribution I can understand and use the Normal distribution I can link this to histograms, mean, standard deviation and points of inflection I can link Normal distribution and the binomial distribution I can link Normal distribution and the binomial distribution I can select an appropriate probability distribution for a context, with appropriate reasoning, including recognising when the binomial or Normal model may not be appropriate I can understand and apply the language of statistical hypothesis testing, developed through a binomial model: null hypothesis, alternative hypothesis, significance level, 2-tail test, critical value, critical region, acceptance region, p-value				
statistics I can recognise and interpret possible outliers in data sets and statistical diagrams I can select or critique data presentation techniques in the context of a statistical problem I can clean data including dealing with missing data, errors and outliers I can understand and use mutually exclusive and independent events when calculating probabilities I can link this to discrete and continuous distributions I can understand and use conditional probability, including the use of tree diagrams, Venn diagrams and two-way tables I can understand and use the conditional probability formula I can model with probability including critiquing assumptions made and the likely effect of more realistic assumptions I can understand and use simple, discrete probability distributions including binomial distribution, as a model and calculate probabilities using the binomial distribution I can understand and use the Normal distribution as a model and find probabilities using the Normal distribution I can link this to histograms, mean, standard deviation and points of inflection I can link Normal distribution and the binomial distribution I can select an appropriate probability distribution for a context, with appropriate reasoning, including recognising when the binomial or Normal model may not be appropriate I can understand and apply the language of statistical hypothesis testing, developed through a binomial model: null hypothesis, alternative hypothesis, significance level, 2-tail test, critical value, critical region, acceptance region, p-value				
I can recognise and interpret possible outliers in data sets and statistical diagrams I can select or critique data presentation techniques in the context of a statistical problem I can clean data including dealing with missing data, errors and outliers I can understand and use mutually exclusive and independent events when calculating probabilities I can link this to discrete and continuous distributions I can understand and use conditional probability, including the use of tree diagrams, Venn diagrams and two-way tables I can understand and use the conditional probability formula I can model with probability including critiquing assumptions made and the likely effect of more realistic assumptions I can understand and use simple, discrete probability distributions including binomial distribution, as a model and calculate probabilities using the binomial distribution I can link this to histograms, mean, standard deviation and points of inflection I can link Normal distribution and the binomial distribution I can select an appropriate probability distribution I can select an appropriate probability distribution for a context, with appropriate reasoning, including recognising when the binomial or Normal model may not be appropriate I can understand and apply the language of statistical hypothesis testing, developed through a binomial model: null hypothesis, alternative hypothesis, significance level, 2-tail test, critical value, critical region, acceptance region, p-value				
Statistical diagrams I can select or critique data presentation techniques in the context of a statistical problem I can clean data including dealing with missing data, errors and outliers I can understand and use mutually exclusive and independent events when calculating probabilities I can link this to discrete and continuous distributions I can understand and use conditional probability, including the use of tree diagrams, Venn diagrams and two-way tables I can understand and use the conditional probability formula I can model with probability including critiquing assumptions made and the likely effect of more realistic assumptions I can understand and use simple, discrete probability distributions including binomial distribution, as a model and calculate probabilities using the binomial distribution I can understand and use the Normal distribution as a model and find probabilities using the Normal distribution I can link this to histograms, mean, standard deviation and points of inflection I can link Normal distribution and the binomial distribution I can link Normal distribution and the binomial distribution I can select an appropriate probability distribution for a context, with appropriate reasoning, including recognising when the binomial or Normal model may not be appropriate I can understand and apply the language of statistical hypothesis testing, developed through a binomial model: null hypothesis, alternative hypothesis, significance level, 2-tail test, critical value, critical region, acceptance region, p-value				
I can select or critique data presentation techniques in the context of a statistical problem I can clean data including dealing with missing data, errors and outliers I can understand and use mutually exclusive and independent events when calculating probabilities I can link this to discrete and continuous distributions I can understand and use conditional probability, including the use of tree diagrams, Venn diagrams and two-way tables I can understand and use the conditional probability formula I can understand and use the conditional probability formula I can understand and use simple, discrete probability distributions including binomial distribution, as a model and calculate probabilities using the binomial distribution I can understand and use the Normal distribution as a model and find probabilities using the Normal distribution as a model and find probabilities using the Normal distribution I can link this to histograms, mean, standard deviation and points of inflection I can link Normal distribution and the binomial distribution I can select an appropriate probability distribution for a context, with appropriate reasoning, including recognising when the binomial or Normal model may not be appropriate I can understand and apply the language of statistical hypothesis testing, developed through a binomial model: null hypothesis, alternative hypothesis, significance level, 2-tail test, critical value, critical region, acceptance region, p-value				
of a statistical problem I can clean data including dealing with missing data, errors and outliers I can understand and use mutually exclusive and independent events when calculating probabilities I can link this to discrete and continuous distributions I can understand and use conditional probability, including the use of tree diagrams, Venn diagrams and two-way tables I can understand and use the conditional probability formula I can model with probability including critiquing assumptions made and the likely effect of more realistic assumptions I can understand and use simple, discrete probability distributions including binomial distribution, as a model and calculate probabilities using the binomial distribution I can understand and use the Normal distribution as a model and find probabilities using the Normal distribution I can link this to histograms, mean, standard deviation and points of inflection I can link Normal distribution and the binomial distribution I can select an appropriate probability distribution for a context, with appropriate reasoning, including recognising when the binomial or Normal model may not be appropriate I can understand and apply the language of statistical hypothesis testing, developed through a binomial model: null hypothesis, alternative hypothesis, significance level, 2-tail test, critical value, critical region, acceptance region, p-value				
I can clean data including dealing with missing data, errors and outliers I can understand and use mutually exclusive and independent events when calculating probabilities I can link this to discrete and continuous distributions I can understand and use conditional probability, including the use of tree diagrams, Venn diagrams and two-way tables I can understand and use the conditional probability formula I can model with probability including critiquing assumptions made and the likely effect of more realistic assumptions I can understand and use simple, discrete probability distributions including binomial distribution, as a model and calculate probabilities using the binomial distribution I can understand and use the Normal distribution as a model and find probabilities using the Normal distribution I can link this to histograms, mean, standard deviation and points of inflection I can link Normal distribution and the binomial distribution I can select an appropriate probability distribution for a context, with appropriate reasoning, including recognising when the binomial or Normal model may not be appropriate I can understand and apply the language of statistical hypothesis testing, developed through a binomial model: null hypothesis, alternative hypothesis, significance level, 2-tail test, critical value, critical region, acceptance region, p-value	·			
outliers I can understand and use mutually exclusive and independent events when calculating probabilities I can link this to discrete and continuous distributions I can understand and use conditional probability, including the use of tree diagrams, Venn diagrams and two-way tables I can understand and use the conditional probability formula I can model with probability including critiquing assumptions made and the likely effect of more realistic assumptions I can understand and use simple, discrete probability distributions including binomial distribution, as a model and calculate probabilities using the binomial distribution I can understand and use the Normal distribution as a model and find probabilities using the Normal distribution I can link this to histograms, mean, standard deviation and points of inflection I can link Normal distribution and the binomial distribution I can select an appropriate probability distribution for a context, with appropriate reasoning, including recognising when the binomial or Normal model may not be appropriate I can understand and apply the language of statistical hypothesis testing, developed through a binomial model: null hypothesis, alternative hypothesis, significance level, 2-tail test, critical value, critical region, acceptance region, p-value				
I can understand and use mutually exclusive and independent events when calculating probabilities I can link this to discrete and continuous distributions I can understand and use conditional probability, including the use of tree diagrams, Venn diagrams and two-way tables I can understand and use the conditional probability formula I can model with probability including critiquing assumptions made and the likely effect of more realistic assumptions I can understand and use simple, discrete probability distributions including binomial distribution, as a model and calculate probabilities using the binomial distribution I can understand and use the Normal distribution as a model and find probabilities using the Normal distribution I can link this to histograms, mean, standard deviation and points of inflection I can select an appropriate probability distribution for a context, with appropriate reasoning, including recognising when the binomial or Normal model may not be appropriate I can understand and apply the language of statistical hypothesis testing, developed through a binomial model: null hypothesis, alternative hypothesis, significance level, 2-tail test, critical value, critical region, acceptance region, p-value				
events when calculating probabilities I can link this to discrete and continuous distributions I can understand and use conditional probability, including the use of tree diagrams, Venn diagrams and two-way tables I can understand and use the conditional probability formula I can model with probability including critiquing assumptions made and the likely effect of more realistic assumptions I can understand and use simple, discrete probability distributions including binomial distribution, as a model and calculate probabilities using the binomial distribution I can understand and use the Normal distribution as a model and find probabilities using the Normal distribution I can link this to histograms, mean, standard deviation and points of inflection I can link Normal distribution and the binomial distribution I can select an appropriate probability distribution for a context, with appropriate reasoning, including recognising when the binomial or Normal model may not be appropriate I can understand and apply the language of statistical hypothesis testing, developed through a binomial model: null hypothesis, alternative hypothesis, significance level, 2-tail test, critical value, critical region, acceptance region, p-value				
I can link this to discrete and continuous distributions I can understand and use conditional probability, including the use of tree diagrams, Venn diagrams and two-way tables I can understand and use the conditional probability formula I can model with probability including critiquing assumptions made and the likely effect of more realistic assumptions I can understand and use simple, discrete probability distributions including binomial distribution, as a model and calculate probabilities using the binomial distribution I can understand and use the Normal distribution as a model and find probabilities using the Normal distribution I can link this to histograms, mean, standard deviation and points of inflection I can link Normal distribution and the binomial distribution I can select an appropriate probability distribution for a context, with appropriate reasoning, including recognising when the binomial or Normal model may not be appropriate I can understand and apply the language of statistical hypothesis testing, developed through a binomial model: null hypothesis, alternative hypothesis, significance level, 2-tail test, critical value, critical region, acceptance region, p-value				
I can understand and use conditional probability, including the use of tree diagrams, Venn diagrams and two-way tables I can understand and use the conditional probability formula I can model with probability including critiquing assumptions made and the likely effect of more realistic assumptions I can understand and use simple, discrete probability distributions including binomial distribution, as a model and calculate probabilities using the binomial distribution I can understand and use the Normal distribution as a model and find probabilities using the Normal distribution I can link this to histograms, mean, standard deviation and points of inflection I can link Normal distribution and the binomial distribution I can select an appropriate probability distribution for a context, with appropriate reasoning, including recognising when the binomial or Normal model may not be appropriate I can understand and apply the language of statistical hypothesis testing, developed through a binomial model: null hypothesis, alternative hypothesis, significance level, 2-tail test, critical value, critical region, acceptance region, p-value				
of tree diagrams, Venn diagrams and two-way tables I can understand and use the conditional probability formula I can model with probability including critiquing assumptions made and the likely effect of more realistic assumptions I can understand and use simple, discrete probability distributions including binomial distribution, as a model and calculate probabilities using the binomial distribution I can understand and use the Normal distribution as a model and find probabilities using the Normal distribution I can link this to histograms, mean, standard deviation and points of inflection I can link Normal distribution and the binomial distribution I can select an appropriate probability distribution for a context, with appropriate reasoning, including recognising when the binomial or Normal model may not be appropriate I can understand and apply the language of statistical hypothesis testing, developed through a binomial model: null hypothesis, alternative hypothesis, significance level, 2-tail test, critical value, critical region, acceptance region, p-value				
I can understand and use the conditional probability formula I can model with probability including critiquing assumptions made and the likely effect of more realistic assumptions I can understand and use simple, discrete probability distributions including binomial distribution, as a model and calculate probabilities using the binomial distribution I can understand and use the Normal distribution as a model and find probabilities using the Normal distribution I can link this to histograms, mean, standard deviation and points of inflection I can link Normal distribution and the binomial distribution I can select an appropriate probability distribution for a context, with appropriate reasoning, including recognising when the binomial or Normal model may not be appropriate I can understand and apply the language of statistical hypothesis testing, developed through a binomial model: null hypothesis, alternative hypothesis, significance level, 2-tail test, critical value, critical region, acceptance region, p-value				
I can model with probability including critiquing assumptions made and the likely effect of more realistic assumptions I can understand and use simple, discrete probability distributions including binomial distribution, as a model and calculate probabilities using the binomial distribution I can understand and use the Normal distribution as a model and find probabilities using the Normal distribution I can link this to histograms, mean, standard deviation and points of inflection I can link Normal distribution and the binomial distribution I can select an appropriate probability distribution for a context, with appropriate reasoning, including recognising when the binomial or Normal model may not be appropriate I can understand and apply the language of statistical hypothesis testing, developed through a binomial model: null hypothesis, alternative hypothesis, significance level, 2-tail test, critical value, critical region, acceptance region, p-value				
and the likely effect of more realistic assumptions I can understand and use simple, discrete probability distributions including binomial distribution, as a model and calculate probabilities using the binomial distribution I can understand and use the Normal distribution as a model and find probabilities using the Normal distribution I can link this to histograms, mean, standard deviation and points of inflection I can link Normal distribution and the binomial distribution I can select an appropriate probability distribution for a context, with appropriate reasoning, including recognising when the binomial or Normal model may not be appropriate I can understand and apply the language of statistical hypothesis testing, developed through a binomial model: null hypothesis, alternative hypothesis, significance level, 2-tail test, critical value, critical region, acceptance region, p-value				
I can understand and use simple, discrete probability distributions including binomial distribution, as a model and calculate probabilities using the binomial distribution I can understand and use the Normal distribution as a model and find probabilities using the Normal distribution I can link this to histograms, mean, standard deviation and points of inflection I can link Normal distribution and the binomial distribution I can select an appropriate probability distribution for a context, with appropriate reasoning, including recognising when the binomial or Normal model may not be appropriate I can understand and apply the language of statistical hypothesis testing, developed through a binomial model: null hypothesis, alternative hypothesis, significance level, 2-tail test, critical value, critical region, acceptance region, p-value	, , , , , , , , , , , , , , , , , , , ,			
including binomial distribution, as a model and calculate probabilities using the binomial distribution I can understand and use the Normal distribution as a model and find probabilities using the Normal distribution I can link this to histograms, mean, standard deviation and points of inflection I can link Normal distribution and the binomial distribution I can select an appropriate probability distribution for a context, with appropriate reasoning, including recognising when the binomial or Normal model may not be appropriate I can understand and apply the language of statistical hypothesis testing, developed through a binomial model: null hypothesis, alternative hypothesis, significance level, 2-tail test, critical value, critical region, acceptance region, p-value				
I can understand and use the Normal distribution as a model and find probabilities using the Normal distribution I can link this to histograms, mean, standard deviation and points of inflection I can link Normal distribution and the binomial distribution I can select an appropriate probability distribution for a context, with appropriate reasoning, including recognising when the binomial or Normal model may not be appropriate I can understand and apply the language of statistical hypothesis testing, developed through a binomial model: null hypothesis, alternative hypothesis, significance level, 2-tail test, critical value, critical region, acceptance region, p-value				
I can understand and use the Normal distribution as a model and find probabilities using the Normal distribution I can link this to histograms, mean, standard deviation and points of inflection I can link Normal distribution and the binomial distribution I can select an appropriate probability distribution for a context, with appropriate reasoning, including recognising when the binomial or Normal model may not be appropriate I can understand and apply the language of statistical hypothesis testing, developed through a binomial model: null hypothesis, alternative hypothesis, significance level, 2-tail test, critical value, critical region, acceptance region, p-value				
find probabilities using the Normal distribution I can link this to histograms, mean, standard deviation and points of inflection I can link Normal distribution and the binomial distribution I can select an appropriate probability distribution for a context, with appropriate reasoning, including recognising when the binomial or Normal model may not be appropriate I can understand and apply the language of statistical hypothesis testing, developed through a binomial model: null hypothesis, alternative hypothesis, significance level, 2-tail test, critical value, critical region, acceptance region, p-value				
I can link this to histograms, mean, standard deviation and points of inflection I can link Normal distribution and the binomial distribution I can select an appropriate probability distribution for a context, with appropriate reasoning, including recognising when the binomial or Normal model may not be appropriate I can understand and apply the language of statistical hypothesis testing, developed through a binomial model: null hypothesis, alternative hypothesis, significance level, 2-tail test, critical value, critical region, acceptance region, p-value				
of inflection I can link Normal distribution and the binomial distribution I can select an appropriate probability distribution for a context, with appropriate reasoning, including recognising when the binomial or Normal model may not be appropriate I can understand and apply the language of statistical hypothesis testing, developed through a binomial model: null hypothesis, alternative hypothesis, significance level, 2-tail test, critical value, critical region, acceptance region, p-value				
I can link Normal distribution and the binomial distribution I can select an appropriate probability distribution for a context, with appropriate reasoning, including recognising when the binomial or Normal model may not be appropriate I can understand and apply the language of statistical hypothesis testing, developed through a binomial model: null hypothesis, alternative hypothesis, significance level, 2-tail test, critical value, critical region, acceptance region, p-value	· · · · · · · · · · · · · · · · · · ·			
I can select an appropriate probability distribution for a context, with appropriate reasoning, including recognising when the binomial or Normal model may not be appropriate I can understand and apply the language of statistical hypothesis testing, developed through a binomial model: null hypothesis, alternative hypothesis, significance level, 2-tail test, critical value, critical region, acceptance region, p-value				
with appropriate reasoning, including recognising when the binomial or Normal model may not be appropriate I can understand and apply the language of statistical hypothesis testing, developed through a binomial model: null hypothesis, alternative hypothesis, significance level, 2-tail test, critical value, critical region, acceptance region, p-value				
binomial or Normal model may not be appropriate I can understand and apply the language of statistical hypothesis testing, developed through a binomial model: null hypothesis, alternative hypothesis, significance level, 2-tail test, critical value, critical region, acceptance region, p-value	I can select an appropriate probability distribution for a context,			
I can understand and apply the language of statistical hypothesis testing, developed through a binomial model: null hypothesis, alternative hypothesis, significance level, 2-tail test, critical value, critical region, acceptance region, p-value				
testing, developed through a binomial model: null hypothesis, alternative hypothesis, significance level, 2-tail test, critical value, critical region, acceptance region, p-value				
alternative hypothesis, significance level, 2-tail test, critical value, critical region, acceptance region, p-value				
critical region, acceptance region, p-value	testing, developed through a binomial model: null hypothesis,			
	alternative hypothesis, significance level, 2-tail test, critical value,			
I can extend this to correlation coefficients as measures of how	critical region, acceptance region, p-value			
	I can extend this to correlation coefficients as measures of how			
close data points lie to a straight line	close data points lie to a straight line		<u></u>	

I can interpret a given correlation coefficient using a given p-value		
or critical value		
I can conduct a statistical hypothesis test for the proportion in the		
binomial distribution and interpret the results in context		
I can understand that a sample is being used to make an inference		
about the population		
I can appreciate that the significance level is the probability of		
incorrectly rejecting the null hypothesis		
I can conduct a statistical hypothesis test for the mean of a Normal		
distribution with known, given or assumed variance and interpret		
the results in context		

<u>Mechanics</u>

Topics	Red	Amber	Green
I can understand and use fundamental quantities and units in the			
S.I. system: length, time and mass			
I can understand and use derived quantities and units: velocity,			
acceleration, force, weight, moment			
I can understand and use the language of kinematics, position,			
displacement, distance travelled, velocity, speed and acceleration			
I can understand, use and interpret graphs in kinematics for			
motion in a straight line: displacement against time and			
interpretation of gradient, velocity against time and interpretation			
of gradient and area under the graph			
I can understand, use and derive the formulae for constant			
acceleration for the motion in a straight line			
I can extend the formulae for constant acceleration to 2			
dimensions using vectors			
I can use calculus in kinematics for motion in a straight line and			
can extend this to 2 dimensions using vectors			
I can model motion under gravity in a vertical plane using vectors			
I can derive formulae for time of flight, range and greatest height			
through the path of a projectile			
I can understand the concept of a force and can understand and			
use Newton's first law			
I can understand and use Newton's second law for motion in a			
straight line and extend to situations where forces need to be			
resolved			
I can understand and use weight and motion in a straight line			
under gravity; gravitational acceleration, and its value in S.I. units			
to varying degrees of accuracy			
I can understand and use Newton's third law, equilibrium of forces			
on a particle and motion in a straight line			
I can understand and use the addition of forces, resultant forces			
and dynamics for motion in a plane			
I can understand and use the model for friction, coefficient of			
friction, motion of a body on a rough surface, limiting friction and statics			
I can understand and use moments in simple static contexts			
I can model motion under gravity relating to projectiles and			
projectile motion]		